Renal arteriolar Na+/Ca2+ exchange in salt-sensitive hypertension.

نویسندگان

  • L D Nelson
  • M T Unlap
  • J L Lewis
  • P D Bell
چکیده

The present studies were performed to assess Na+/Ca2+ exchange activity in afferent and efferent arterioles from Dahl/Rapp salt-resistant (R) and salt-sensitive (S) rats. Renal arterioles were obtained by microdissection from S and R rats on either a low-salt (0.3% NaCl) or high-salt (8.0% NaCl) diet. On the high-salt diet, S rats become markedly hypertensive. Cytosolic calcium concentration ([Ca2+]i) was measured in fura 2-loaded arterioles bathed in a Ringer solution in which extracellular Na (Nae) was varied from 150 to 2 mM (Na was replaced with N-methyl-D-glucamine). Baseline [Ca2+]i was similar in afferent arterioles of R and S rats fed low- and high-salt diet. The change in [Ca2+]i (Delta[Ca2+]i) during reduction in Nae from 150 to 2 mM was 80 +/- 10 and 61 +/- 3 nM (not significant) in afferent arterioles from R rats fed the low- and high-salt diet, respectively. In afferent arterioles from S rats on a high-salt diet, Delta[Ca2+]i during reductions in Nae from 150 to 2 mM was attenuated (39 +/- 4 nM) relative to the Delta[Ca2+]i of 79 +/- 13 nM (P < 0.05) obtained in afferent arterioles from S rats on a low-salt diet. In efferent arterioles, baseline [Ca2+]i was similar in R and S rats fed low- and high-salt diets, and Delta[Ca2+]i in response to reduction in Nae was also not different in efferent arterioles from R and S rats fed low- or high-salt diets. Differences in regulation of the exchanger in afferent arterioles of S and R rats were assessed by determining the effects of protein kinase C (PKC) activation by phorbol 12-myristate 13-acetate (PMA, 100 nM) on Delta[Ca2+]i in response to reductions in Nae from 150 to 2 mM. PMA increased Delta[Ca2+]i in afferent arterioles from R rats but not from S rats. These results suggest that Na+/Ca2+ exchange activity is suppressed in afferent arterioles of S rats that are on a high-salt diet. In addition, there appears to be a defect in the PKC-Na+/Ca2+ exchange pathway that might contribute to altered [Ca2+]i regulation in this important renal vascular segment in salt-sensitive hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renal arteriolar Na1/Ca21 exchange in salt-sensitive hypertension

Nelson, Lawrence D., M. Tino Unlap, James L. Lewis, and P. Darwin Bell. Renal arteriolar Na1/Ca21 exchange in salt-sensitive hypertension. Am. J. Physiol. 276 (Renal Physiol. 45): F567–F573, 1999.—The present studies were performed to assess Na1/Ca21 exchange activity in afferent and efferent arterioles from Dahl/Rapp salt-resistant (R) and salt-sensitive (S) rats. Renal arterioles were obtaine...

متن کامل

Renal arteriolar injury by salt intake contributes to salt memory for the development of hypertension.

The role of salt intake in the development of hypertension is prominent, but its mechanism has not been fully elucidated. Our aim was to examine the effect of transient salt intake during the prehypertensive period in hypertensive model animals. Dahl salt-sensitive rats and spontaneously hypertensive rats were fed from 6 to 14 weeks with low-salt (0.12% NaCl), normal-salt (0.8% NaCl), high-salt...

متن کامل

Renal apical membrane sodium-hydrogen exchange in genetic salt-sensitive hypertension.

Inbred Dahl/Rapp salt-sensitive and salt-resistant rats differ in their blood pressure response to dietary salt. We studied sodium-hydrogen (Na-H) exchanger kinetics in renal brush border membrane vesicles prepared from both strains on either a 1% or 8% NaCl diet. Kinetics measurements were made with the acridine orange fluorescence quenching technique in vesicles prepared at pH 6.0. The initia...

متن کامل

Vascular Na+/Ca2+ exchanger: implications for the pathogenesis and therapy of salt-dependent hypertension.

The Na+/Ca2+ exchanger is an ion transporter that exchanges Na+ and Ca2+ in either Ca2+ efflux or Ca2+ influx mode, depending on membrane potential and transmembrane ion gradients. In arterial smooth muscle cells, the Na+/Ca2+ exchanger is thought to participate in the maintenance of vascular tone by regulating cytosolic Ca2+ concentration. Recent pharmacological and genetic engineering studies...

متن کامل

Salt excretion and vascular resistance of perfused kidneys of Dahl rats.

We used a cell-free, 5% albumin-containing bicarbonate saline solution to perfuse kidneys of salt-sensitive (S) and salt resistant (R) rats derived from Dahl's original strains. The animals had been maintained on diets whose salt content was either 8% ((+)Na) or 0.4% ((-)Na). On these regimens only S(+)Na rats become hypertensive. Glomerular filtration rate (GFR), urinary sodium excretion (NaE)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 276 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999